Technical Specifications and Register Map For

mLink 12bit Digital Port Expander Module (HCMODU0180)

DISCLAIMER

The mLink range is a series of modules intended for the hobbyist and educational markets. Where every care has been taken to ensure the reliability and durability of this product it should not be used in safety or reliability critical applications.

This document is provided "as is". Hobby Components Ltd makes no warranties, whether express, implied or statutory, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose, accuracy or lack of negligence. Hobby Components Ltd shall not, in any circumstances, be liable for any damages, including, but not limited to, special, incidental or consequential damages for any reason whatsoever.

COPYRIGHT NOTICE

This manual, including content and artwork is copyright of Hobby Components Ltd and may not be reproduced without written permission. If you paid for or received a copy of this manual from a source other than Hobby Components Ltd, please contact us at sales@hobbycomponents.com

Specifications

Module specifications:

Module code: HCMODU0180
Supply Voltage (VDD): 3V to 5.5V
Current consumption (no load): 4.5mA

Interfaces: I2C & 12 x digital I/O pins I2C Interface speed: 400kbits/s (fast mode)

I2C default address (HEX): 0h50

Maximum number of modules: 5 with pullups fitted, 112 with pullups removed*

Module dimensions (inc headers): 43mm x 19mm x 11.5mm

*Note the maximum number of connected modules will depend on cable lengths and power requirements of each module. Do not exceed 5 mLink modules connected in series with all pullups fitted.

Digital IO pin specifications:

Digital output max freq: 1.54KHz

Digital Input low level voltage: -0.3V to 0.3 x VDD

Digital Input high level voltage: 0.7 x VDD to VDD + 0.3V

Digital output pin current source: Max 10mA

Digital output pin current sink: Pins 0 to 2 & 5 to 11 max 10mA

Pins 3 & 4 max 4mA

Digital output pullup resistor: 30K to 80K Ohms

Register Map

Register quick reference table

REGISTER	REG ADD	Reg Bit 7	Reg Bit 6	Reg Bit 5	Reg Bit 4	Reg Bit 3	Reg Bit 2	Reg Bit 1	Reg Bit 0
STATUS	0h00			RESE	RVED			REGERR	I2CERR
I2C ADD (Def = 0h50)	0h01	RESERVED				I2CADD			
MODULE TYPE	0h02		Oh01						
MODULE SUBTYPE	0h03		0h00						
FIRMWARE VERSION	0h04				0h.	xx			
RESERVED	0h05 to 0h09				RESE	RVED			
DIO DIR LOW	0h0A	DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
DIO DIR HIGH	0h0B		>	(DIR11	DIR10	DIR9	DIR8
DIO DATA LOW	0h0C	DATA7	DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA						DATA0
DIO DATA HIGH	0h0D		C)		DATA11	DATA10	DATA9	DATA8

Status register

Register address: 0h00

Default value: 0

7	6	5	4	3	2	1	0
	RESERVED						I2CERR
	r						rw

Bits 7:2 Reserved

Bit 1 REGERR: Register access error

This bit is set by hardware and reset by software

0: No register access error

1: Register access error caused by attempting to access an non-existent register, writing an illegal value to a register, or writing to a read only register

Bit 0 I2CERR: I2C bus access error

This bit is set by hardware and reset by software

0: No I2C error

1: An I2C bus error has occurred

Writing any value to this register will clear all bits

I2C Address Register

Register address: 0h01 Default value: 0h50

7	6	5	4	3	2	1	0	
N/A		I2CADD						
r				rw				

Bit 7 N/A: Returns 0

Bits 6:0 **I2CADD**: 7 bit I2C address (default factory reset value = 0h50)

These bits are set by software

Values written to this register will be stored in non-volatile memory

Valid address range is 0h08 to 0h77. Addresses outside this range will be ignored but will set the **REGERR** bit in the status register.

Before a new address can be written to this register it must first be unlocked by writing bytes 0x55 followed by 0xAA. The new address byte must then be written within 100ms of writing the 0xAA byted otherwise the unlock process will timeout and reset.

Module Type Register

Register address: 0h02 Default value: 0h01

7 6 5 4 3 2 1 0									
MTYP									
	r								

Bits 7:0 **MTYP**: 8 bit value representing the module type.

This register will always return 0h01 signifying this module type is 'Temperature & humidity sensor'

Module Subtype Register

Register address: 0h03 Default value: 0h00

7	6	5	4	3	2	1	0	
STYP								
	r							

Bits 7:0 **STYP**: 8 bit value representing the module subtype.

This register will always return 0h00 signifying this module subtype is 'DHT22'

Firmware Version Register

Register address: 0h04 Default value: 0hXX

7	6	5	4	3 2 1 0				
	FWI	MAV		FWMIV				
	1	r		Г				

Bits 7:4 **FWMAV**: 4 bit value representing the modules major firmware version

Bits 3:0 **FWMAV**: 4 bit value representing the modules minor firmware version

DIO Direction Register Low

Register address: 0h0A Default value: 0hFF

7	6	5	4	3	2	1	0		
DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0		
	rw								

Bits 7:0 **DIR[7:0]**: Data direction for DIO pins 7 to 0.

These bits are set by software

0: Output (push-pull)1: Input (with pullup)

DIO Direction Register High

Register address: 0h0B Default value: 0hFF

7	6	5	4	3	2	1	0
х				DIO11	DIR10	DIR9	DIR8
	ı	r		rw			

Bits 7:4 Don't care

Bits 3:0 DIR[11:8]: Data direction for DIO pins 11 to 8.

These bits are set by software

0: Output (push-pull)1: Input (with pullup)

DIO Data Register Low

Register address: 0h0C Default value: 0hXX

7	6	5	4	3	2	1	0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
			r	N			

Bits 7:0 **DATA[7:0]**: Input/Output pin values for pins 7 to 0.

Can be used to read or write pin states irrespective of whether the pin is an input or output.

0: Low logic level1: High logic level

DIO Data Register High

Register address: 0h0D Default value: 0hXX

7	6	5	4	3	2	1	0
	0				DATA10	DATA9	DATA8
			r	N			

Bits 7:4 Returns 0

Bits 3:0 DATA[11:8]: Input pin values for pins 11 to 8.

Can be used to read or write pin states irrespective of whether the pin is an input or output.

0: Low logic level

1: High logic level