
 Arduino Quick Start Guide and
 Examples for

 mLink 12bit Digital Port Expander
 Module (HCMODU0180)

 Setting up your mLink module in 3 easy steps

 Step 1: Connecting to your microcontroller

 DEVICE VDD GND SDA SCL

 Uno/Nano 3.3V/5V GND A4 A5

 Pro Mini 3.3V/5V GND A4 A5

 Pro Micro 3.3V/5V GND 2 3

 Mega 3.3V/5V GND 20 21

 Due 3.3V/5V GND 20 21

 Other microcontroller 3.3V/5V GND I2C SDA I2C SCL

 mlink modules can be connected to any microcontroller with an I2C (IIC) serial master
 interface. The above example shows a mLink module connected to an Arduino Uno’s I2C
 interface. It can be powered via a 5V or 3.3V supply (depending on the logic levels you
 require the modules digital IO pins to operate at, and voltage requirements of any additional
 mLink modules connected to the modules I2C output).

 1
 © Hobby Components Ltd

 Connecting multiple mLink modules

 Each mLink module includes pullup resistors (10K), which are required for the SDA and SCL
 data lines. This allows up to 5* mLink modules to be connected directly to an I2C master
 without any additional hardware or modifications.

 *note maximum number of modules will be dependent on data cable lengths and module
 power requirements.

 If more than 5 mLink modules are required to be connected to a single master interface then
 the built-in 10K resistors will need to be removed from the additional modules.

 The mLink digital port expander comes with a preset I2C address of 0x50 (hex). When
 connecting multiple modules of the same type each module's I2C address must be unique.
 Therefore you must change the address of any additional modules to a unique address
 (valid I2C addresses range between 0x08 and 0x77) before linking them together. Changing
 a module's I2C address can be done via the module's I2C interface. For examples of how to
 do this, see the Changing I2C address section within this document.

 Step 2) Installing the mLink Library

 Adding the mLink library to your Arduino IDE can be done in the same way as any other
 standard Arduino library:

 First download the mLink.zip file from the software section of our support forum here:

 https://hobbycomponents.com/mLink

 Once downloaded, open up your Arduino IDE and go to Sketch->Include Library->Add .ZIP
 Library.

 2
 © Hobby Components Ltd

https://hobbycomponents.com/mLink

 In the file selection dialogue window that opens up, navigate to wherever you downloaded
 the mLink .zip file and select it, then click the ‘Open’ button.

 3
 © Hobby Components Ltd

 Step 3) Including the mLink library in your sketch

 Adding the mLink library to your sketch consists of 3 steps; Firstly, include the mLink header
 file (mLink.h) at the top of your sketch, create an instance of the library, then finally initialise
 the library inside the startup() function:

 // Step 1: Include the mLink library
 #include "mLink.h"

 //Step 2: Create an instance of the library
 mLink mLink ;

 void setup ()
 {
 // Step 3: Initialise the library
 mLink . init ();

 }

 void loop ()
 {
 }

 4
 © Hobby Components Ltd

 Quick Start Examples

 Configuring the port direction
 The digital pins on the port expander module can be configured to be either inputs (with
 pullups) or outputs (push-pull). Note, by default all 12 pins are set to inputs.

 To set the direction of a pin you must write to the appropriate bit in the module's data
 direction registers. Using the mLink library this can easily be done in one of two ways, by
 using the libraries writeBit() function to set the direction of an individual pin, or by using the
 writeInt() to set the direction of all 12 pins at once:

 Setting the direction of individual pins
 To set the direction of an individual pin you can use the writeBit() library function, just specify
 the modules I2C address (default 0x50), the pin you wish to set the direction of (you can
 specify the pin number or use one of the predefined library values DIO12_DIR_D0 to
 DIO12_DIR_D11), and the direction to set it to. 0 will set the pin to an output and 1 to an input or for
 readability you can use the libraries DIO12_OUTPUT and DIO12_INPUT definitions .

 The following example will set pin D0 to an output and pin D1 to an input.

 #include "mLink.h"

 mLink mLink;

 #define I2C_ADD 0x50

 void setup()
 {
 mLink.init();

 // Set pin 0 to an output
 mLink . writeBit (I2C_ADD , DIO12_D0_OUTPUT);

 // Set pin 1 to an input
 mLink . writeBit (I2C_ADD , DIO12_D1_INPUT);

 }

 void loop()
 {
 }

 5
 © Hobby Components Ltd

 Setting the direction of all 12 pins at once

 To set the direction of all 12 pins at once you can use the mLink libraries writeInt() function.
 The example below will set pins 0 to 5 as outputs and pins 6 to 11 as inputs.

 #include "mLink.h"

 mLink mLink;

 #define I2C_ADD 0x50

 void setup()
 {
 mLink.init();

 // Set pins 0 to 5 as outputs and bits 6 to 11 as inputs
 unsigned int dir = 0b111111000000;

 mLink . writeInt (I2C_ADD , DIO12_DIR , dir);
 }

 void loop()
 {
 }

 Reading input pins

 Reading a single input pin
 To read the state of a single bit you can use the libraries readBit() function, just specify the
 module's I2C address, and the input pin to read (DIO12_IN_PIN0 to DIO12_IN_PIN11). The
 following example will read the state of input pin 0 and output the result to the serial port.

 #include "mLink.h"

 mLink mLink;

 #define I2C_ADD 0x50

 void setup()
 {
 mLink.init();
 Serial .begin(115200);

 // Set pin 0 to an input
 mLink . writeBit (I2C_ADD , DIO12_D0_INPUT);

 }

 void loop()
 {
 // Read the state of pin 0

 6
 © Hobby Components Ltd

 boolean val = mLink . readBit (I2C_ADD , DIO12_D1);

 Serial .println(val);
 delay(100);

 }

 Reading all inputs at once
 To read all input pins at once you can use the libraries readInt() function. The following
 example will read all 12 pins at once and output the result to the serial port.

 #include "mLink.h"

 mLink mLink;

 #define I2C_ADD 0x50

 unsigned int val;

 void setup()
 {
 mLink.init();
 Serial .begin(115200);

 // Set all pins to inputs
 val = 0b111111111111;
 mLink . writeInt (I2C_ADD , DIO12_DIR , val);

 }

 void loop()
 {
 // Read all 12 inputs and save to an integer
 val = mLink . readInt (I2C_ADD , DIO12_DATA);

 Serial .println(val, BIN);
 delay(100);

 }

 Controlling output pins

 Controlling a single output pin
 To set the state of an output pin you can use the libraries writeBit() function, just specify the
 modules I2C address, the output pin to write to (DIO12_OUT_PIN0 to DIO12_OUT_PIN11), and
 the state to set the pin to. The following example will ‘blink’ pin 0.

 7
 © Hobby Components Ltd

 #include "mLink.h"

 mLink mLink;

 #define I2C_ADD 0x50

 void setup()
 {
 mLink.init();
 Serial .begin(115200);

 // Set pin 0 to an output
 mLink . writeBit (I2C_ADD , DIO12_D0_OUTPUT);

 }

 void loop()
 {
 // ‘Blink’ pin 0
 mLink . writeBit (I2C_ADD , DIO12_D0 , HIGH);
 delay (1000);
 mLink . writeBit (I2C_ADD , DIO12_D0 , LOW);
 delay (1000);

 }

 Writing to all output pins at once
 To set the state of all output pins at once you can use the libraries writeInt() function. The
 following example will ‘blink’ all 12 pins at once.

 #include "mLink.h"

 mLink mLink;

 #define I2C_ADD 0x50

 unsigned int val;

 void setup()
 {
 mLink.init();

 // Set all pins to outputs
 val = 0b000000000000;
 mLink . writeInt (I2C_ADD , DIO12_DIR , val);

 }

 void loop()
 {
 // Set all pins high
 val = 0b111111111111;
 mLink . writeInt (I2C_ADD , DIO12_DATA , val);
 delay (1000);

 // Set all pins low
 val = 0b000000000000;

 8
 © Hobby Components Ltd

 mLink . writeInt (I2C_ADD , DIO12_DATA , val);
 delay (1000);

 }

 Changing the I2C address
 To change the module's address you can use the libraries write() function.

 The following example changes the module's I2C address from the default 0x50 to 0x51.
 The new address will automatically be saved into non-volatile memory and so will retain the
 new address even after power has been removed from the module.

 Before the module's address can be changed, the address register must first be unlocked by
 writing the byte value 0x55 followed by the byte value 0xAA to the register. The new address
 must then be written within 100ms of sending the 0xAA byte otherwise the unlock process
 will timeout and the process will then have to be restarted.

 #include "mLink.h"

 mLink mLink;

 void setup()
 {
 mLink.init();

 // Unlock the address register by writing 0x55 followed by 0xAA
 mLink . write (0x50 , MLINK_ADD_REG , 0x55);
 mLink . write (0x50 , MLINK_ADD_REG , 0xAA);

 // Change the I2C address from 0x50 to 0x51
 mLink . write (0x50 , MLINK_ADD_REG , 0x51);

 }

 void loop()
 {
 }

 9
 © Hobby Components Ltd

 Factory Reset

 Should you wish to restore the module back to its factory default configuration, this can be
 done by manually forcing a factory reset. All mLink modules include a set of pads labeled
 clear:

 Note, exact location of clear jumper may vary on your module

 To perform a factory reset carefully short the two pads together with a piece of wire or with
 something conductive such as a paperclip.

 Whilst shorted, connect power to the module via the VCC and GND connections.

 Wait a few seconds and then remove the short from the pads.

 The module's settings, including its I2C address, should now be restored back to factory

 defaults.

 10
 © Hobby Components Ltd

 DISCLAIMER

 The mLink range is a series of modules intended for the hobbyist and educational markets.
 Where every care has been taken to ensure the reliability and durability of this product it
 should not be used in safety or reliability critical applications.

 This document is provided "as is". Hobby Components Ltd makes no warranties, whether
 express, implied or statutory, including, but not limited to, implied warranties of
 merchantability and fitness for a particular purpose, accuracy or lack of negligence. Hobby
 Components Ltd shall not, in any circumstances, be liable for any damages, including, but
 not limited to, special, incidental or consequential damages for any reason whatsoever.

 COPYRIGHT NOTICE
 This manual, including content and artwork is copyright of Hobby Components Ltd and may
 not be reproduced without written permission. If you paid for or received a copy of this
 manual from a source other than Hobby Components Ltd, please contact us at
 sales@hobbycomponents.com

 11
 © Hobby Components Ltd

