mLink Library Reference Guide for

mLink Character LCD
(HCMODUO190x)

Installing the mLink library

Adding the mLink library to your Arduino IDE can be done in the same way as any other
Arduino library:

First download the mLink.zip file from the software section of our support forum here:

https://hobbycomponents.com/mLink

Once downloaded, open up your Arduino IDE and go to Sketch->Include Library->Add .ZIP
Library.

&9 sketch_sep17a | Arduine 1.8.12
File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
sketch Upload Using Programmer Ctrl+5Shift+L
void sg Export compiled Binary Ctrl+Alt+5
ffopa
Show Sketch Folder Ctrl+K
! Include Library !
void 1d Add File... Manage Libraries... Ctrl+Shift+|
/f put your main code here, to run repeate Add ZIP Library...
1 Arduine libraries
Bridge
EEPROM
Esplora
Ethernet
Firmata
G5M
HID
Keyboard
LiquidCrystal
Mouse

Arduino Mano, ATmega32

Rrknt (Cantral

1
© Hobby Components Ltd

https://hobbycomponents.com/mLink

In the file selection dialogue window that opens, navigate to wherever you downloaded the
mLink .zip file and select it, then click the ‘Open’ button.

'ﬁ' Select a zip file or a folder containing the library you'd like to add x
Look in: * Downloads v| F ¢ E-
;'-'-% H mLink.zip
Recent Items

Desktop

A5
Documents

! File name: mLink. zip

This PC Files of type: | ZIP files or folders " Cancel

2

© Hobby Components Ltd

Including the mLink library in your sketch

Adding the mLink library to your sketch consists of 3 steps; Firstly include the mLink header
file (mLink.h) at the top of your sketch, create an instance of the library, then finally initialise
the library inside the startup() function:

/I Step 1: Include the mLink library
#include "mLink.h"

/[Step 2: Create an instance of the library
mLink mLink;

void setup()

/I Step 3: Initialise the library
mLink.init();
}

void loop()

{
}

3
© Hobby Components Ltd

COMMAND
init()

Quick library reference table

Initialises the mLink library

PARAMETERS

None

RETURNS

n/a

readBit(add, reg,
bit)

Reads the state of a bit
from one of the mLink
registers

add = byte value containing 12C
address of mLink module

reg = byte value containing
register index

bit = byte value containing the bit
number to read (0 to 7)

boolean value

containing the state of

the bit

read(add, reg)

Reads the contents of one
of the mLink registers

add = byte value containing 12C
address of mLink module

reg = byte value containing
register index

byte value containing

the state of the

register

writeBit(add, reg,
bit, state)

Writes to a bit in one of the
mLink registers

add = byte value containing 12C
address of mLink module

reg = byte value containing
register index

bit = byte value containing the bit
number to write to (0 to 7)

state = boolean value to set the
bit to

n/a

write(add, reg,
data)

Writes data to one of the
mLink registers

add = byte value containing 12C
address of mLink module

reg = byte value containing
register index

data = byte value containing the
data to write to the register

n/a

write(add, reg,
bytes, *data)

Writes data to one or more
consecutive registers

add = byte value containing 12C
address of mLink module

reg = byte value containing
register index of the first register
to write to

bytes = the size of the data in
bytes to write

*data = a byte pointer to the start
of the data to write

n/a

sleep(add);

Puts the module into a low
power sleep mode.

add = byte value containing 12C
address of mLink module

n/a

cLCD_print(add,
text)

Library macro that prints
ASCII text to the display

add = byte value containing 12C
address of mLink module

text = a null terminated character
array

n/a

4

© Hobby Components Ltd

cLCD_printFloat(a

Library macro that prints a

add = byte value containing 12C
val = the floating point number to

floating point number to the (print n/a
dd, val, dp) display dp = the number of decimal
places to display
. Library macro that prints add = byte value containing 12C
cLCD_;;nit)Cust(a one of the 8 custom i = the index number (0 to 7) of n/a
’ characters to the display [the custom character to print
add = byte value containing 12C
col = signed byte value containing
cLCD_cursor(add, |Library macro sets the the column position (-128 to 127) n/a
col, row) cursor location row = signed byte value
containing the row position (-128
to 127)
cLCD_clear(add) L|bra.ry macro that clears add = byte value containing 12C n/a
the display
cLCD_on(add, [Library macro turns the add = byte valug containing 12C
. state = the required state (1 = on, n/a
state) display on or off
0 = off)
cLCD_cursDir(add |Library macro that sets the aqd=. byte vlalue.contalmng 12C
dir) cursor direction dir = is the direction of the cursor n/a
’ (0 = left to right, 1 = right to left)
cLCD_dispType(a |Library macro that sets the add = byte yalue containing 12C
dd. type) displav tvoe type =the display type (0 = 16x2, n/a
. Library macro that sets the add = byte value containing [2C
cLCD_backlight(ad|, . level = a value from 0 to 10
brightness level of the . . n/a
d, level) . representing the backlight level (0
backlight .
= off, 10 = maximum)
add = byte value containing 12C
cLCD_contrast(ad |Library macro that sets the |level = bye value representing the n/a
d, level) displays contrast level contrast level (0 = min, 255 =
max)
cLCD_setCust0(ad L!brary macro that writes a a<'1d = byte value containing 12C
. bitmap to custom character |bitmap = an array of 8 bytes n/a
d, bitmap) . .
0 containing the bitmap
cLCD_setCust1(ad L!brary macro that writes a a<'1d = byte value containing 12C
bitmap to custom character |bitmap = an array of 8 bytes n/a
d, d) . .
1 containing the bitmap
cLCD_setCust2(ad L!brary macro that writes a add = byte value containing 12C
bitmap to custom character |bitmap = an array of 8 bytes n/a
d, d) - .
2 containing the bitmap
cLCD_setCust3(ad L!brary macro that writes a add = byte value containing 12C
bitmap to custom character |bitmap = an array of 8 bytes n/a

d, d)

3

containing the bitmap

5

© Hobby Components Ltd

cLCD_setCust4(ad

Library macro that writes a
bitmap to custom character

add = byte value containing 12C
bitmap = an array of 8 bytes

n/a

d, d) 4 containing the bitmap
cLCD_setCust5(ad L!brary macro that writes a add = byte value containing 12C
d, d) bitmap to custom character |bitmap = an array of 8 bytes n/a
’ 5 containing the bitmap
cLCD_setCust6(ad L!brary macro that writes a add = pyte value containing 12C
d, d) bitmap to custom character |bitmap = an array of 8 bytes n/a
’ 6 containing the bitmap
cLCD_setCust7(ad L!brary macro that writes a add = pyte value containing 12C
bitmap to custom character |bitmap = an array of 8 bytes n/a

d, d)

7

containing the bitmap

6

© Hobby Components Ltd

Library Commands

mLink.init()

Initialises the mLink library
Add to the setup() section of your sketch to initialise the mLink library

mLink.init()

None

Nothing

void setup()

.init();
}

void loop()

{
}

7
© Hobby Components Ltd

mLink.readBit(add, reg, bit)

Reads the state of a bit from one of the mLink modules 8 bit registers and returns the result as a
boolean value.

add.: byte value containing 12C address of mLink module. Alternatively, if the mLink module is set to
its default I2C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

reg: byte value containing the register number to read. You can either specify the register
number (see register table) or you can use one of the following predefined values:

MLINK_STATUS_REG
CLCD_CRf1
CLCD_CR2

bit: byte value containing the bit number within the specified register to read. Valid values are
Oto7.

A boolean value representing the state of the bit.

Reads the state of bit 1 (display type) from control register 2

boolean result = . (CLCD_I2C_ADD, MLINK_CLCD_CR2, 1);

8
© Hobby Components Ltd

mLink.read(add, reg)

Reads the state of one of the mLink modules 8 bit registers and returns the result as a byte.

add: byte value containing 12C address of mLink module. Alternatively, if the mLink module is set to
its default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

reg: byte value containing the register number to read. You can either specify the register
number (see register table) or you can use one of the following predefined values:

MLINK_STATUS REG
MLINK_ADD_REG
MLINK_MOD_TYPE_REG
MLINK_MOD_SUBTYPE_REG
MLINK_SW_VER_REG
CLCD_COL

CLCD_ROW

CLCD_CRf1

CLCD_CR2
CLCD_BACKLIGHT
CLCD_CONTRAST

A byte value representing the state of the register.

Reads the col register to get the cursor column position (register 12)

int8_t col = : (CLCD_I2C_ADD, CLCD_COL);

9
© Hobby Components Ltd

mLink.write(add, reg, data)

Writes to one of the mLink modules 8 bit registers.

add: byte value containing I12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

reg: byte value containing the register number to write to. You can either specify the register
number (see register table) or you can use one of the following predefined values:

MLINK_STATUS REG
MLINK_ADD_REG
CLCD_COL
CLCD_ROW
CLCD_PRINT
CLCD_CRf1
CLCD_CR2
CLCD_BACKLIGHT
CLCD_CONTRAST
CLCD_PRINT_CUST

data: byte value containing the data to write to the register

None

Prints the ASCII character ‘A’ to the display at the current cursor location.

.write(CLCD_[2C_ADD, CLCD_PRINT, ‘A);

10
© Hobby Components Ltd

mLink.write(add, reg, bytes, *data)

Writes data to one or more consecutive registers.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default I2C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

reg: byte value containing the register number of the first register to write to. You can either
specify the register number (see register table) or you can use one of the following
predefined values:

::gzt:sr Label Alternate Label
0x0B MLINK_CLCD_PRINT_CHAR_REG CLCD_PRINT
0x13 MLINK_CLCD_CUSTO_REG CLCD_CUSTO
0x14 MLINK_CLCD_CUST1_REG CLCD_CUST1
0x15 MLINK_CLCD_CUST2_REG CLCD_CUST2
0x16 MLINK_CLCD_CUST3_REG CLCD_CUST3
0x17 MLINK_CLCD_CUST4_REG CLCD_CUST4
0x18 MLINK_CLCD_CUST5_REG CLCD_CUST5
0x19 MLINK_CLCD_CUST6_REG CLCD_CUST6
0x1A MLINK_CLCD_CUST7_REG CLCD_CUsST7

bytes: byte value containing the size of the data in bytes to write.

*data: a byte pointer to the start of the data to write.

None

11
© Hobby Components Ltd

Writes a custom character bitmap to custom character 0.

byte bitmap = {Ox0E, 0x1F, 0x11, 0x11, 0x11, 0x11, 0x11, Ox1F};

.write(CLCD_I12C_ADD, CLCD_CUSTO, bitmap, 8);

12
© Hobby Components Ltd

mLink.sleep(add);

Puts the module into a low power sleep mode.

Sleep mode is automatically exited on the next register read or write.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

None

Puts the module into low power sleep mode.

.sleep(CLCD_I2C_ADD);

13
© Hobby Components Ltd

mLink.cLCD_print(add, text);

Library macro that prints one or more ASCII characters to the display at the current cursor location.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

text: a null terminated character array containing the text to print.

None

Prints ‘Hello World!' to the display at the current cursor location.

char text[] = "Hello World!";

.cLCD_print(CLCD_I2C_ADD, text);

14
© Hobby Components Ltd

mLink.cLCD_printFloat(add, val, dp);

Library macro that prints a floating point number to the display at the current cursor location.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_l2C_ADD
val: the value to print

dp: the number of decimal places to print the number to.

None

Prints the value 123.456 to 2 decimal places at the current cursor location.

float val = 123.456;

.cLCD_printFloat(CLCD_I2C_ADD, val, 2);

15
© Hobby Components Ltd

mLink.cLCD_printCust(add, i);

Library macro that prints one of the 8 custom characters to the display at the current cursor location.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

i: the index number of the custom character to print (0 to 7)

None

Prints custom character 0 to the display at the current cursor location.

.cLCD_printCust(CLCD_I2C_ADD, 0);

16
© Hobby Components Ltd

mLink.cLCD_cursor(add, col, row);

Library macro that sets the location of the cursor.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD
col: a signed byte value containing the column number to move the cursor to where 0 = the left most
displayable column on the display and 15 (16x2 LCD), or 19 (20x4 LCD) is the right most displayable

column. Writing a value outside this range will move the cursor to a position outside the displayable
area.

row: a signed byte value containing the row number to move the cursor to where 0 = the top most
displayable row on the display and 1 (16x2 LCD), or 3 (20x4 LCD) is the bottom, most displayable
row. Writing a value outside this range will move the cursor to a position outside the displayable area.

None

Prints ‘Hello World! to the display starting from column 3, row 1.

cLCD_cursor(CLCD_I2C_ADD, 3, 1);
.cLCD_print(CLCD_I2C_ADD, “Hello World");

17
© Hobby Components Ltd

mLink.cLCD_clear(add);

Library macro that clears the display. Note that the cursor location will also be reset to col 0, row 0.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

None

Clears the display.

cLCD_clear(CLCD_12C_ADD);

18
© Hobby Components Ltd

mLink.cLCD_on(add, state);

Library macro that turns the display on or off.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD
state: a boolean value that specifies the required on off state (0 = display off, 1 = display on).
Alternatively you can use the predefined values:

OFF
ON

None

Turns the display off.

cLCD_on(CLCD_I2C_ADD, OFF);

19
© Hobby Components Ltd

mLink.cLCD_cursDir(add, dir);

Library macro that sets the direction the cursor will move after printing an ASCII or custom character.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

dir: a boolean value that specifies the required direction of the cursor (0 = cursor moves right, 1 =
cursor moves left). Alternatively you can use the predefined values:

CURS_LTOR
CURS_RTOL

None

Sets the cursor direction to move left after printing a character.

cLCD_curDir(CLCD_I2C_ADD, CURS_RTOL);

20
© Hobby Components Ltd

mLink.cLCD_dispType(add, type);

Library macro that sets the display type (16x2 or 20x4).

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD
type: a boolean value containing the display type (0 = 16x2, 1 = 20x4). Alternatively you can
use the predefined values:

CLCD_TYPE_1602
CLCD_TYPE_2004

None

Sets the display type to a 20x4 character display.

cLCD dispType(CLCD_I2C_ADD, CLCD_TYPE_2004);

21
© Hobby Components Ltd

mLink.cLCD_backlight(add, level);

Library macro that sets the display's backlight level.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

level: is a byte value containing the backlight brightness level in 10% increments where 0 =
off and 10 = 100%. Note, setting the backlight level to a value above 10 will cause the level
to be set to 100%

None

Sets the backlight level to 50%.

cLCD_backlight(CLCD_I2C_ADD, 5);

22
© Hobby Components Ltd

mLink.cLCD_contrast(add, level);

Library macro that sets the display's contrast level.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

level: is a byte value containing the display's contrast level where 0 = min and 255 = max.

None

Sets the contrast level to 0x55.

cLCD_contrast(CLCD_I12C_ADD, 0x55);

23
© Hobby Components Ltd

mLink.cLCD_setCust0...7(add, bitmap);

Library macros (cLCD_setCust0 to cLCD_setCust7) that write a bitmap to one of the 8 custom
characters.

add: byte value containing 12C address of mLink module. Alternatively if the mLink module is set to its
default 12C address (0x56) you can use the predefined value:

CLCD_I2C_ADD

bitmap: is an 8 byte array containing the bitmap to write

None

Writes a bitmap (battery icon) to custom character 0 then prints it to the display at the current
cursor location.

byte bitmap = {Ox0E, Ox1F, 0x11, 0x11, 0x11, 0x11, Ox11, Ox1F};

cLCD_setCustO(CLCD_I12C_ADD, bitmap);
.cLCD printCust(CLCD_I2C_ADD, 0);

24
© Hobby Components Ltd

DISCLAIMER

The mLink range is a series of modules intended for the hobbyist and educational markets.
Where every care has been taken to ensure the reliability and durability of this product it
should not be used in safety or reliability critical applications.

This library and document is provided "as is". Hobby Components Ltd makes no warranties,
whether express, implied or statutory, including, but not limited to, implied warranties of
merchantability and fitness for a particular purpose, accuracy or lack of negligence. Hobby
Components Ltd shall not, in any circumstances, be liable for any damages, including, but
not limited to, special, incidental or consequential damages for any reason whatsoever.

COPYRIGHT NOTICE

This manual, including content and artwork is copyright of Hobby Components Ltd and may
not be reproduced without written permission. If you paid for or received a copy of this
manual from a source other than Hobby Components Ltd, please contact us at
sales@hobbycomponents.com

25
© Hobby Components Ltd

